A Y ad | l oo ADVANCING
AGU 100 &z,

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1029/2018JD029231

Key Points:

« Sector-based inversion of emissions
was demonstrated by jointly
assimilating CO and CO, mole
fractions over Indianapolis

« Top-down multispecies
measurements and high-resolution
bottom-up sectoral emissions are in
relative agreement over Indianapolis

« Current uncertainties in sectoral
emissions of non-CO, trace gases
limit our ability to quantify sectoral
CO, emissions

Correspondence to:
B. J. Nathan,
brian.nathan@mio.osupytheas.fr

Citation:

Nathan, B. J., Lauvaux, T, Turnbull, J. C,,
Richardson, S. J., Miles, N. L.,

& Gurney, K. R. (2018). Source

sector attribution of CO,

emissions using an urban

CO/CO, Bayesian inversion system.
Journal of Geophysical

Research: Atmospheres,

123, 13,611-13,621.
https://doi.org/10.1029/2018)D029231

Received 29 JUN 2018

Accepted 13 NOV 2018

Accepted article online 20 NOV 2018
Published online 13 DEC 2018

Author Contributions

Conceptualization: B. J. Nathan, T.
Lauvaux

Data curation: J. C. Turnbull, S. J.
Richardson, N. L. Miles, K. R. Gurney
Funding Acquisition: T. Lauvau, J. C.
Turnbull

Methodology: B.J. Nathan, T. Lauvaux
Validation: B. J. Nathan, T. Lauvaux,
J. C. Turnbull, S. J. Richardson, N. L.
Miles, K. R. Gurney

Writing - Original Draft: B. J. Nathan,
T. Lauvaux

Formal Analysis: B. J. Nathan, T.
Lauvaux

Investigation: B.J. Nathan, T. Lauvaux,
J.C. Turnbull

Resources: T. Lauvaux, J. C. Turnbull
Supervision: T. Lauvaux
Visualization: B. J. Nathan, T. Lauvaux
Writing - review & editing: B. J.
Nathan, T. Lauvaux, J. C. Turnbull, S. J.
Richardson, N. L. Miles, K. R. Gurney

©2018. American Geophysical Union.
All Rights Reserved.

Source Sector Attribution of CO, Emissions Using an Urban
CO/CO, Bayesian Inversion System

B.J. Nathan''“,T. Lauvaux''"’,J.C. Turnbull>3'"/,S.J. Richardson', N.L. Miles’,
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Abstract We assimilate multiple trace gas species within a single high-resolution Bayesian inversion
system to optimize CO,ff emissions for individual source sectors. Starting with carbon monoxide (CO), an
atmospheric trace gas with fairly well-known emissions, we use emission factors of CO and CO,ff (called
Rco) defined for each source sector to enable us to jointly use CO and CO, atmospheric mole fractions to
constrain CO,ff sectoral emissions. We first show that our combined CO-CO, inversion is theoretically
capable of estimating the relative magnitude of sectoral emissions for two, specially defined sectors over
Indianapolis, while CO,-only inversions failed at quantifying sectoral emissions. When assimilating hourly
mole fractions collected over 4 months, inverse sectoral emissions converge toward high-resolution CO,ff
bottom-up emissions from Hestia. The emission ratios between the two sectors agree within 15% with
Hestia across various inversion configurations. The assimilation of CO mole fractions preferentially improves
flux estimates from traffic emissions, because the CO levels originating from the combustion engine sector
are large relative to those from other economic sectors. In a further investigation, we find that including
an additional third tracer sensitive to the other sectors only slightly improves the accuracy of the inversion
compared to our current two-sector inversions with CO and CO, mole fractions. We finally examined the
impact of errors in trace gas emission factors and quantify their relative impact on sector-based inverse
emissions. We conclude that multispecies inversions can constrain sectoral emissions at policy-level
uncertainties if trace gas emission factors are sufficiently well known at the city level.

Plain Language Summary As global urbanization grows rapidly, policymakers need to collect
information about the relative changes in anthropogenic emissions from the different sectors of the
economy in order to make informed policy decisions. However, bottom-up approaches, relying on activity
data, remain the only methods able to produce emissions at the sector level. In our study, we investigate
whether atmospheric inversions can help inform about CO, emissions from specific sectors of the economy
through the inclusion of atmospheric measurements of non-CO, trace gases. Our results demonstrate that
the joint optimization of atmospheric trace gases, here CO, and carbon monoxide (CO), within a single
inversion framework can help characterize sector-level emissions of CO, over the city of Indianapolis, IN.
Emissions from traffic are constrained in parallel with the other sectors of activities. City mitigation policies
targeting specific sectors of the local economy can now be better evaluated by atmospheric measurements,
with a nearly independent approach to provide more confidence in the effectiveness of emission reduction
measures. These results will have important implications for policy makers and the carbon cycle community,
reinforcing the link between policy decisions and future climate projections.

1. Introduction

Anthropogenic CO, emissions continue to increase, causing atmospheric concentrations to increase at their
fastest observed decadal rate (IPCC, 2014; Le Quéré et al.,, 2017). A significant portion of these emissions origi-
nate from urban areas (about 70%), and this number is expected to increase as forecasts predict an additional
2.5-3 billion people relocating to urban areas by 2050 (Seto et al., 2014). Accurate urban emission quantifi-
cation and reporting will be paramount to helping policymakers decide on appropriate mitigation strategies
(e.g., Ciais et al.,, 2014). Short of a few scientifically intensive efforts in a handful of cities (e.g., Gurney et al.,
2012), current urban emissions quantification is primarily composed of self-reported efforts following one of
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a few standardized protocols (Carney & Shackley, 2009; Ewing-Thiel & Manarolla, 2011; Wong et al., 2014; WRI
/WBCSD, 2004). The self-reported inventories, in particular, may contain biases/errors when used to diagnose
emissions or as a baseline to emissions projection. As noted by Nisbet and Weiss (2010), atmospheric meth-
ods could provide additional constraints on anthropogenic carbon emissions to better inform policymakers
about their decisions (Hutyra et al., 2014). Recent studies have demonstrated how atmospheric inversions
could help assess urban-scale CO, emissions over time and space (e.g., Bréon et al., 2015; Lauvaux et al., 2016;
Nickless et al., 2018) but policy decisions require information for individual sectors of the economy, and with
subcity spatial resolution (Gurney, 2015).

The use of additional atmospheric tracer species has been studied for separating CO, atmospheric sig-
nals into components, such as fossil fuel CO, emissions from biogenic signals at continental scales (e.g.,
Boschetti et al., 2017) or for whole-city emissions (e.g., Wong et al., 2015). Aside from the use of '*CO, to
separate out fossil-fuel-related CO, (CO,ff) from biogenic and other CO, sources (e.g., Levin et al., 2003;
Turnbull et al., 2015), studies have also looked at §'3C to further distinguish between the gasoline-related,
natural-gas-related, and coal-related influences (e.g., Clark-Thorne & Yapp, 2003; Newman et al.,, 2016). Some
trace gases are also known to have relationships with CO,ff economic sectors, which could, in theory, be
used to help partition a CO,ff signal. For example, HFC-125 is a halocarbon used mainly for commercial pur-
poses (O'Doherty et al., 2009; Velders et al., 2009). SF is primarily used as a spark-quencher in high-voltage
switchgears at electrical transmission and distribution systems (Maiss & Brenninkmeijer, 1998). Acetylene, CO,
and most light hydrocarbons are known to be associated primarily with traffic (e.g., Baker et al., 2008; Colvile
etal., 2001; Fortin et al., 2005; Warneke et al., 2007; Whitby & Altwicker, 1967). Among all the tracers for CO,ff
emissions, CO is the most widely used, largely due to the relative ease of measurement and the large body
of research that informs the sources and sinks of CO in the atmosphere. CO is coemitted with CO, from the
incomplete burning of fossil fuels, thus is directly related to CO,ff emissions (e.g., Meijer et al., 1996; Newman
etal, 2013; Turnbull et al,, 2015). However, in order to assimilate atmospheric trace gases for accurate sector
attribution, emission rates of these gases need to be known for each economic sector and for specific geo-
graphiclocations (Nathan et al., 2018). Indeed, Super et al. (2017) show that CO observations, in particular, can
be used to estimate CO,ff emissions given knowledge of the emission ratios, and that information gleaned
from the CO observation footprints (as created using a combination of an Eulerian Model and a Lagrangian
Transport model, to get appropriate resolution detail Super et al.,, 2016) can help to delineate CO,ff sector
contributions.

Atmospheric inversions have traditionally focused on optimizing flux estimates for a single species, like CO,
(e.g., Bréon et al.,, 2015; Lauvaux et al,, 2016; Rddenbeck et al., 2003) or '*CO, from discrete flask samples
(Graven et al,, 2018). Recently, attempts have been made to calculate inversions by assimilating both CO, and
CO data from satellites and airplane measurements (Palmer et al., 2006; Wang et al., 2009). These efforts have
found success by focusing on coupling the error correlations to exploit both CO’s known relationship to CO,
and its increased sensitivity to model transport errors. Boschetti et al. (2017) included CH, to optimize CO,
broken down by emission sectors and fuel type. Error-correlation-based multispecies inversions have shown
promise in improving CO, emission uncertainties on a large scale. However, multispecies inversion based on
emission factors across the various CO, emission sectors is needed to adequately account for the temporal
and spatial variability in non-CO, species’ emission factors.

In this study, we combine CO and CO, mole fractions to improve CO,ff emission distribution estimates
between traffic and nontraffic sectors in the Indianapolis urban environment. This is achieved through a
traditional Bayesian inversion calculation modifying the framework from Lauvaux et al. (2016) using prior esti-
mates from the Hestia data product (Gurney et al., 2012) and CO:CO,ff emission factors (R¢y) derived from
flask samples (Turnbull et al., 2015; Vimont et al., 2017). Traffic and nontraffic sectors are defined in the inver-
sion to constrain sectoral emissions simultaneously. We then present results after inclusion of real in situ data
recorded at five measurement towers in and around Indianapolis during the first 4 months of 2015.

2, Data and Methodology

2.1. The INFLUX Inversion System

The INdianapolis FLUX (INFLUX) project focuses on monitoring greenhouse gas (GHG) emissions from the
Indianapolis urban area (Davis et al., 2017; Miles, Richardson, Lauvaux, et al., 2017). Twelve Cavity Ring-Down
Spectrometers (Crosson, 2008; Rella et al., 2013) have been deployed to continuously record (1 Hz) GHG
(i.e., CO,, CO, and CH,) atmospheric mole fractions (Miles, Richardson, Lauvaux, et al., 2017) with calibration

NATHAN ET AL.

13,612



Journal of Geophysical Research: Atmospheres 10.1029/2018JD029231

using NOAA tertiary standards (Richardson et al., 2017). Here hourly CO and CO, observations from 1 January
to 30 April 2015 collected at towers 1, 2, 3, 6, and 9 of the INFLUX network (Miles, Richardson, Davis, et al.,
2017) were assimilated in our inversion system. This period of time was chosen both to minimize the biogenic
influence (dormant season) and to maximize the amount of available tower data for both trace gas species.
Only measurements between 12:00 and 17:00 local standard time were used, when the boundary layer can
be assumed to be well mixed. In order to isolate enhancement values from the Indianapolis urban area, the
corresponding mole fractions from background sites were subtracted off depending on wind direction as out-
lined in Lauvaux et al. (2016). WMO data taken at Indianapolis Airport during this 4-month period shows wind
mostly coming from the West and South during this period (wind came from between SSW and WNW 38.6%
of the time), allowing Tower 1 to serve as the primary logical background tower, with occasional wind from
the East (6.6% of the wind came from the ENE, which is the only other cardinal direction with more than 5%
contribution during this period), wherein Tower 9 became the logical background tower, again all following
the procedure explained in Lauvaux et al. (2016).

With measurements from these towers, we utilize a Bayesian inversion calculation (Tarantola, 2005) to
optimize GHG emissions using an analytical formulation, following the equation

X = Xo + BH(HBH™ + R)™"(y — Hx,), m

where x are the posterior emissions, x, are the prior emissions, y are the observed atmospheric mole fractions,
H are the influence function representing the relationship between surface fluxes and atmospheric mole frac-
tions, B are the prior error covariance matrix, and R is the observation error covariance matrix, such that the
posterior error matrix is defined as A" = B~' + H'R"H.

This approach has been previously used to estimate total CO, emissions from Indianapolis at 1-km resolution,
as described in detail in Lauvaux et al. (2016). We modify the inversion framework by expanding the state vec-
tor (x) to include emissions from multiple CO,ff source sectors. Similarly, we develop the ability to assimilate
non-CO, observations jointly with CO, mole fractions in a consistent framework. Transport errors have pre-
viously been calculated and shown to be low (Deng et al.,, 2017; e.g., error reductions of ~40% in the surface
wind direction and ~50% in upper-air wind direction with data assimilation). In our study, error variances are
defined using the normalized distance of the y? test, that is, ~2.0 ppm for CO, and ~19 ppb for CO, similar to
Lauvaux et al. (2016). Error covariances in R (nondiagonal terms) were assumed negligible between the two
gases and for each individual gas (i.e., in space and time). While spatial and temporal error correlations might
exist, the current literature lacks the required information to prescribe these structures, primarily for transport
model errors. An ensemble-based approach at the urban scale would help construct spatial and temporal
error covariances in future urban-scale inversion systems.

The prior emissions are provided through the Hestia data product (Gurney et al., 2012), a high-resolution
emission product providing estimates by sector, which has been shown to agree within 20% to inversion
estimates (Lauvaux et al., 2016), and within 5% when accounting for known biogenic influences (Gurney et al.,
2017). Hestia provides CO, ff emission estimates for Indianapolis for eight source sectors: Airport, Commercial,
Industrial, OnRoad, NonRoad, Railroad, Residential, and Electricity Production. For the purposes of this study,
these eight sectors are combined into two sectors: Combustion Engine (OnRoad + NonRoad) and Other (six
other sectors). This combination of sectors is performed primarily to balance the source attribution problem
into two equally uncertain sectors of activity. Otherwise, the variance ratio will drive the optimal solution
toward the least-known sector, since larger errors will become overwhelmingly important in the quadratic
form of our minimization problem. The second reason is due to the Ry’s, which are high for sectors using
combustion engines but not for the other sectors. We thus partition the problem in two sectors with total
CO,ff flux errors on the same order of magnitude, and two distinct sensitivities to CO emissions, as shown in
Figure 1.

The Rcp's for each sector were determined by Turnbull et al. (2015), combining reported CO and CO,ff emission
rates and observations from flask measurements at the same five INFLUX towers (1, 2, 3, 6, and 9). The CO,ff
emission rates for each sector are taken from Hestia. The CO emission rates from the EPA NEI (United States
Environmental Protection Agency, 2014) give overall R, values that are a factor of 2.6 higher than those
observed at the INFLUX towers, and the NEI onroad and offroad CO emission rates were reduced to match
the observations, described in detail in Turnbull et al. (2015). The R, for each of the original Hestia sectors in
Indianapolis are determined to be as follows (in units of ppb/ppm): 2.0 for Airport, 1.3 for Commercial, 3.1 for
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Figure 1. Flux maps for the two source sectors are shown: Combustion Engine and Other. The top row are the CO,
fluxes and the bottom row are the corresponding emission-factor-derived CO fluxes, on species-relative color scales. The
sectors are chosen to have CO, fluxes in the same order of magnitude, but where one sector (Combustion Engine) has
much higher CO fluxes than the opposing sector (Other).

Industrial, 15 for OnRoad, 45 for NonRoad, 2.0 for Railroad, 0.7 for Residential, and 0.2 for Electricity Production
(Turnbull et al., 2015). The emission factors for CO in OnRoad and NonRoad are substantially higher than in
any other sector, consistent with measurements of the stable isotopes of CO from INFLUX. During winter in
Indianapolis, CO emissions are strongly dominated by traffic sources (Vimont et al., 2017). Thus, creating one
sector by combining only onroad and offroad mobile sectors (the Combustion Engine sector) and leaving the
remaining sectors in the opposing sector (Other), we also effectively have one High-CO sector and one Low-CO
sector, as shown in Figure 1. The new R, emission factors for these combined sectors, as scaled by the relative
fluxes during the 1 January to 30 April 2015 period of interest, are 17.0 for the Combustion Engine sector
and 1.8 for the Other sector. The uncertainties associated with these emission factors, resulting from spatial
and temporal variations, can be large. For example, Ammoura et al. (2014) found an uncertainty around 43%
for fluent traffic in Paris (average vehicle speed above 50 km/hr). Here uncertainties are likely to be smaller,
constrained by '*CO, observations. Turnbull et al. (2015) found a flask-based R, of 8 + 2 ppb/ppm, with 25%
uncertainty. We discuss in section 3.3 the impact of uncertain gas ratios in the sectoral attribution problem.

Prior emission error standard deviations are set to be half of the mean emissions (i.e.,, 50% uncertainty),
excluding strong point sources (>2.5 x 10° mol-km~2 -hr~') which are instead set to the median values of
the errors across all pixels in the domain. Power plants and industrial emissions are directly reported to
the US GHG Reporting Program, hence are assumed to be better constrained compared to other smaller
sources (United States Environmental Protection Agency, 2016). Although this assumption may be contested,
this error-normalizing procedure also prevents the inversion calculation from disproportionately focusing
flux corrections at these large-point-source pixels, allowing for more distributed corrections. In order to
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maintain that the whole-city emission error remains equal to 50% of the net emissions, the differences
between these extremely large variances and the median values they are reset to are redistributed uniformly
over the entire grid (i.e., variances were scaled). Spatial error correlations for both sectors correspond to a
combination of sector land cover and an exponentially decaying function similar to Lauvaux et al. (2016), with
a 5-km correlation length within each sector. It has been previously shown in Wu et al. (2018) that a spatial
error correlation length of between 2 and 8 km is appropriate for CO, inversions of Indianapolis to obtain an
optimal Degree of Freedom in the Signal—anything larger will cause the city to act as one single unknown
when the fluxes are adjusted. At the other extreme, the complete absence of spatial error correlations in B
would lack the regularization of the inverse problem, causing a divergence of the solution (Bocquet, 2005).
More work needs to be done, especially at the sector level, before any further sensitivity investigation could
be fruitful. The prior errors of the Combustion Engine sector are uncorrelated with those of the Other sector,
considering that traffic data and vehicle emission factors are unlikely to be affected by the errors in electricity
production or the other sectors (e.g., industry, commercial). We optimize a 4-month average for each sec-
tor simultaneously, assuming spatial error structures remain unchanged during the winter season. For other
seasons, the magnitude of each sector, hence their errors, will vary depending on electricity production lev-
els and house heating, for example. We limit our experiment to one season, avoiding potential biogenic CO
sources, and assuming constant error structures for each sector over the 4-month period.

2.2. Inversions with CO, and CO

Inversions are first run in the capacity of Observing System Simulation Experiments (OSSEs) to assess
the potential of the system. For the period of 1 January to 30 April 2015, measurements are simulated
at each available tower for the species-of-interest using influence functions and Hestia emissions with
emission-ratio-based flux estimates using the following formula:

"
Enhancement; = " (x; * H;) , @
=

where j denotes the source sector of interest (for our study j,.,=2), x are the Hestia- and emission-ratio-based
flux values, H are the influence function values, and the sum across i — n; denotes the cumulative total
through the n; pixels where the influence function overlaps sector j. Note that the CO prior flux maps are
derived by multiplying the CO,ff sectoral flux maps by the appropriate emission factor. For a simultaneous
multispecies inversion, the initial state vector x, from equation (1) is expanded to include each species’ flux
maps and y is expanded to include each species’ observations. The influence functions are computed at 1-km
resolution using the Weather Research and Forecasting model (Skamarock & Klemp, 2008) coupled with the
Lagrangian Particle Dispersion Model (Uliasz, 1994) as described in detail in Lauvaux et al. (2016).

In our pseudo-measurement (cf. equation (2)), we perturb the Hestia fluxes in a repeatable way, creating three
different prior flux scenarios (perfect twin experiments). As demonstrated in Lauvaux et al. (2016), Hestia is
one of the most advanced emission products, and has been evaluated against atmospheric data. We assume
here that Hestia emissions are accurate enough to demonstrate the potential of our inversion, especially for
sectoral emissions attribution. By offsetting our initial prior emissions compared to Hestia, we evaluate the
ability of the inversion to recover the original sectoral flux ratio. This flux ratio of 1.10 (for W) is
thus altered to create a high-ratio prior and a low-ratio prior by adding or subtracting a perturbation vector
to the Hestia- and emission-factor-based fluxes. The perturbation vector is defined as described above: 50%
of the mean flux value at each pixel, except for very-high-emitting sources, as explained in section 2.1. In
the high-ratio prior case, we add the Combustion Engine sector’s perturbations but only half of the Other
sector’s perturbations. In the low-ratio case, we subtract off the same respective perturbation amounts. The
resulting sector flux ratio numbers are 1.32 and 0.73, respectively. Inversions are then performed using these
two prior-ratio cases for three different scenarios: using only CO, data, using only CO data, and using both
CO, and CO data, to be able to compare the relative improvements. After the OSSEs have been performed in
this system, real tower data are substituted for the pseudo-measurements and the inversions are recalculated
from the same two preset priors.

The upper and lower limits of the error bars around the ratio estimates are calculated using the formula

( CE ) E(CE) + +/var(CE)
E\— ) = :
Oth/  EOth) + 1/var(Oth)
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Pseudodata Sector Flux Ratios Here the upper and lower limit error bars are defined by the range, E is the
2 ~

1.5

0.5

CO2 Flux Sector Ratio (CE/Other)
=

expected value, var is the variance, and CE and Oth are the Combustion
Engine and Other sector, respectively. In this case, for example, the expec-
tation value of CE when solving for an error bar on a prior flux estimate
would be represented by the corresponding prior fluxes for the Combus-

A Prior Ratio
* Posterior Ratio

tion Engine sector. The variance of CE would be the sum of the error
\ —_ g

correlation submatrix for this sector, as extracted from the full multisector

error correlation matrix (B from equation 1).
/ / 2.3. A Hypothetical Other Tracer

We tested the impact of a third atmospheric tracer with a high gas ratio
from the Other sector to compensate for CO, which is highly sensitive to
the Combustion Engine sector. Here an additional series of pseudo-data
inversions are performed. For consistency, the data set and time period

0 ‘ are chosen to be INFLUX tower measurements during the period of 1

C010“\" co oY 0, and €O January to 30 April 2015. The assumptions and constraints of the system

are also identical to the previous inversions. Valid measurements for the

Real-Data Sector Flux Ratios Other Tracer (OT) are assumed to have been collected only at sites and

27 S EETT times when valid CO measurements are available. The flux-scaled mean

CO emission factor for Combustion Engine/Other is 17.1, and is defined

as such to balance CO. We evaluate the gain in information from this

1.5¢ third atmospheric trace gas in our two-sector inversion, reinforcing the
i\ — observational constraint for sectoral attribution.

| 4

0.5+

CO2 Flux Sector Ratio (CE/Other)
—

0

____________________ The gain after inversion is used to gauge improvement in the posterior

estimates where the true emissions are known. Compared to analyzing the

/ ratio of sector fluxes (as done in the previous experiments), the gain gives a
more direct evaluation of the results, but is unavailable when assimilating
real data. The gain is defined as

i=

N
Z1|Xtrueji - Xpost,jil

I\
O, e

Figure 2. The ratio of fluxes for the Combustion Engine sector against the
Other sector is shown both before and after convergence for CO, and CO
data separately and simultaneously. Two predefined priors are run for each

O oW

‘ Gain =1-— 4
e v : @
Col 21 |Xtrue,ji - Xprior,ji|
=

where j denotes the source sector of interest, x the Hestia- and
emission-ratio-based flux values, for a grid point i out of n domain pixels.

scenario, perturbed from the original flux ratio (shown in the dashed line). The subscript true refers to the true flux, here Hestia scaled by any relevant
The high-ratio prior is in red and the low-ratio prior is in blue. In the top emission factor, prior refers to the prior flux after perturbing the true flux,

panel, the CO-only scenario is shown to converge best in the pseudo-data and post refers to the posterior flux estimates after inversion.
trials. This remains consistent in the bottom panel, though the Hestia

dashed line is only an approximation for the truth in this case.

3. Results

3.1. Tower Data Inversion

The top panel in Figure 2 shows the results of the pseudo-data inversion
with the true (Hestia-based) CO,ff sectoral ratio (1.10) indicated by the
dashed line. The ratio of fluxes for the two sectors (Combustion Engine and Other) were initially perturbed
for three inversion scenarios, as described in section 2, while assimilating different atmospheric observations,
that is, only CO,, only CO, and using both CO, and CO mole fractions. The inversion scenario that assimilates
both CO, and CO mole fractions has appreciable convergence back toward the truth (from 1.32 to 1.26 and
from 0.73 to 1.02 for the high-ratio and low-ratio priors, respectively), similar to the CO-only scenario (pos-
teriors of 1.18 and 0.99 for the high-ratio and low-ratio priors, respectively), although the CO-only scenario
clearly has the best convergence. The CO,-only scenario fails for the two cases (posteriors of 1.42 and 0.87
for the high-ratio and low-ratio priors, respectively). Since CO, is equally sensitive to both sectors, we expect
that sectoral fluxes are relatively likely to be adjusted randomly given that they both have comparable uncer-
tainties and no information to disaggregate the mismatches. Therefore, the sector flux ratio is not expected
to improve. The CO-only scenario clearly appears to converge back toward the truth. Here the higher sen-
sitivity of CO to the Combustion Engine sector translates into a clear improvement of the sector flux ratio
(by improving only the Combustion Engine sector flux), in contrast to the CO,-only case.
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Gain Across Varying Emission Ratios
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Figure 3. Theoretical gain after inversion for each sector (Combustion Engine and Other) and across inversion scenarios
in percent. Gain tends to be greater in a sector with higher average emission factors (e.g., CO-only with Combustion
Engine). Data availability and sectoral sensitivity vary by species. OT = Other Tracer.

In Figure 2, the bottom panel shows the results from the same inversion cases and scenarios as in the top
panel except with real tower measurement data substituted in place of the pseudo-data. Because of this sub-
stitution, the dashed reference line for the Hestia flux ratios (1.10) is unlikely to represent the actual truth,
although it is still believed to represent the best first-order approximation and therefore is an acceptable ref-
erence for our real-data inversion scenarios. Here the scenario assimilating only CO mole fractions appears to
converge the best (from 1.32to 1.19 and from 0.73 to 1.15 for the high-ratio and low-ratio priors, respectively).
This is consistent with the results from the pseudo-data inversions (cf. top panel), which suggested that the
CO-only result may be the most trustworthy. The CO,-only results, on the other hand, are probably the least
reliable, despite the apparent trend agreement among both prior-ratio cases (posteriors of 1.35 and 0.94 for
the high-ratio and low-ratio priors, respectively). Further, we would expect additional error in the CO,-based
inversions, because, despite having chosen the analysis period to minimize the biogenic influence (follow-
ing Miles, Richardson, Lauvaux, et al., 2017), there will always be some biogenic CO, flux (Gurney et al., 2017;
Turnbull et al., 2015). This biogenic flux, which may be between 5% and 20% of the fossil fuel flux in Indianapo-
lis during this period (Turnbull et al., 2015), is notincluded in the CO,ff prior flux maps used in the pseudo-data
inversion described here, and should hamper the inversion’s posterior improvement to some extent. The CO
and CO, results are, expectedly, somewhere in between the two cases (posteriors of 1.27 and 0.95 for the
high-ratio and low-ratio priors, respectively).

3.2. Assimilation of Additional Tracers

To better understand the role of trace gas species and theirimportance on the sectoral attribution, we present
the actual gain for each emission sector in Figure 3, including the hypothetical atmospheric tracer partic-
ularly sensitive to the Other sector. All the inversion scenario permutations involving CO,, CO, and/or OT
pseudo-data are shown here. We note that different perturbations would generate higher (resp. lower) gains
starting from higher (resp. lower) errors. Hence, the perturbations in the sector flux ratio are kept constant,
as we intend to compare the gains of both sectors. The mixed assimilation scenarios combining two to three
trace gases show the maximum gain for both sectors (last four bar pairs in Figure 3). The inversion is typically
able to improve the prior sectoral emissions by 30% to 50% across all cases. This value will likely reduce in the
presence of transport errors and incorrect error definitions in real cases.

The additional trace gas OT has a limited impact in the three-gas simultaneous inversion compared to the
other cases mixing two of the three gases. In single-gas cases, the relative gain in one sector over another
is shown to be strongly related to gas-ratio sensitivities (e.g., CO-only with the Combustion Engine sector).
Similarly, in the inversion with only OT pseudo-data, the gain favors the Other sector. Therefore, in the previ-
ous OSSE investigation, the improvement in the relative flux ratio between the sectors resulted mostly from
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improving the flux estimates of the most sensitive sector. In particular, we can note that, while the overall gain
is consistent with the improvement observed in the sector flux ratio for the CO-only inversions in Figure 2,
it is clear that this is driven nearly entirely by improvements in the Combustion Engine sector’s fluxes. Addi-
tional factors may affect the relative gains from the different inversions, too, with the relative uncertainties
between the two sectors being the other most influential. Further factors include the spatial distributions of
the sectoral emissions and the number of observations for a given trace gas. For example, CO, is measured at
more than twice as many INFLUX towers as CO (and, by extension, OT) which drives the gain values and partly
mutes the inclusion of a tracer in the inversion.

3.3. Testing Emission Factor Error Impacts

Our reference configuration uses prescribed errors and error structures, all susceptible to impact our results
as shown in Lauvaux et al. (2016). Here we consider more specifically the uncertainties associated with emis-
sion factors, assumed perfect in our current inversion. Re's for traffic emissions—the primary component in
our Combustion Engine sector—are known to have high uncertainties and differ significantly study-to-study
(e.g., Vimont et al,, 2017, and references therein), with some reported uncertainties nearing 50%, for exam-
ple, Ammoura et al.'s (2014) fluent traffic ratio of 5.68 + 2.43 %. Therefore, we ran pseudo-data trials with
CO emission factors that were 15%, 30%, and 50% below observed values and for the same percentages
above observed values, only applied to pseudo-data measurements of CO and OT. The other conditions of
these inversions were kept constant across all inversions, including prior emissions errors, identical to the
low prior case.

To determine the impact on the inversion, we assess the change in total gain including both sectors. A refer-
ence case with no error in emissions is used to determine the loss in gain following the formula W

For the three inversion scenarios without CO, measurements (CO-only, OT-only, and CO + OT), the mean gain
differences are 0.16 and —0.01 for the +15% cases, —0.13 and —0.10 for the +30% cases, and —1.10 and —0.69
for the £50% cases. We conclude that if the estimated emission rates are within 15% of the observed emission
rates, there is nearly no impact on the inversion’s results. There is about a 10% deviation in results in the 30%
error range, and the inversion becomes unviable near the 50% range. We note that, even in the +50% uncer-
tainty cases, the gain improvement for the inversion with both non-CO, tracers was not substantially different
from the inversions with only one non-CO, tracer. When CO, is included (with no emission rate error) in these
same three inversions for the +£50% case, the gain difference values become —0.95 and —0.39, respectively.
We conclude here that the inclusion of CO, decreases the errors resulting from inaccurate emission ratios just
by nature of not having any uncertainty in that dimension. Considering the uncertainties in inventory-based
Rco may be large, we conclude here additional observations (e.g., '*CO, and CO) need to be collected, which
can substantially reduce the emission factor uncertainty (Levin & Karstens, 2007; Turnbull et al., 2015; Vogel
etal, 2010), likely within the desired 15% threshold.

4, Conclusions

In this study, we tested the use of Bayesian inversions to optimize the economic-sector contributions to an
urban fossil-fuel CO, signal given measurements of tracers of those source sectors. We specifically focus on the
Indianapolis urban environment and divide the city into traffic and nontraffic sectors (called the Combustion
Engine and Other sectors, respectively), using CO as the traffic-related tracer. Using a high-resolution fossil fuel
CO, data product and known CO/CO,ff emission factors, a first-guess prior emission map was constructed for
CO in these sectors, allowing for an inversion calculation. Compared to previous studies exploring whole-city
emission factors of different trace gases or isotopes (e.g., Newman et al., 2016), we described a formal Bayesian
inversion framework to glean information about specific sector contributions to an urban CO,ff signal inside a
metropolitan area. This inversion system provides spatial information, and potentially temporal information if
performed over shorter time windows, within the city limits to identify changes in emissions in space and time.

We determined that the relative flux contributions from each sector are able to be improved over Hestia initial
estimates through calculating an inversion using either only CO data or a combination of CO and CO, data. We
also showed that no improvement in this ratio should be expected when running an inversion only using CO,
data. In theory, it may be possible for CO, alone to distinguish the sectors in a scenario where they are spatially
distinct and a priori defined based on the transport. But sectors overlap spatially in nearly every urban area.
Consequently, the use of a second tracer with a sufficiently large emission factor is deemed to be necessary
for this distinction. We found that posterior gains are strongly influenced by the relative uncertainties in the
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fluxes and the strength of the emission factors. Assuming uncertainties scale with emission magnitudes, a
sector with relatively low fluxes would require an especially sensitive trace gas (i.e., coemitted at a high rate)
to ensure substantial posterior improvements. As a result, future studies should identify trace gases emitted
primarily by the sectors of interest.

The real-data results agree reasonably well with Hestia sectoral emissions (within 15% across all inversion
types), also in agreement with pseudo-data trials, confirming that the Hestia estimate of the sectoral ratio is
suitable for first-order evaluation. Given that the system appears to function as intended and that traffic emis-
sions are ~50% of the total CO,ff emissions for the area, we conclude that current inversion systems could
provide relevant traffic sector CO, emission information to policymakers. We demonstrated that CO mixing
ratios offer an additional constraint on sectoral emissions. Future emission products could combine exist-
ing information such as traffic density, flow and velocity, with atmospheric CO observations to provide more
reliable estimates of traffic emissions. The framework described here only assimilates atmospheric observa-
tions but could be enhanced to assimilate multiple data streams, taking full advantage of the high-resolution
information in Hestia and the time coverage of atmospheric data records. Development of urban networks
measuring multiple trace gases with high-accuracy can potentially help inform about trends and interannual
variability in sectoral emissions.

Additionally, we tested the impact of the availability of an additional tracer for the nontraffic sector. While the
inverse sectoral emissions were slightly improved compared to the prior, the inversion results did not signifi-
cantly improve compared to our original two-gas inversions. In general, our results suggest that flux estimate
improvements tend to significantly favor the emission sector for which a species has a higher sensitivity. How-
ever, uncertainties in current emission factors can still significantly impair our ability to assimilate multiple
species within one single inversion system. While emission factors around 15% away from observed ratios
may have negligible impact, ratios near or worse than 50% away can completely negate the benefits of assim-
ilating multiple species. Additional measurements are needed to better quantify the gas ratios between CO,
and other trace gases before robust inverse sectoral estimates become available.
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